Denervation does not change the ratio of collagen I and collagen III mRNA in the extracellular matrix of muscle.
نویسندگان
چکیده
Denervation or inactivity is known to decrease the mass and alter the phenotype of muscle and the mechanics of tendon. It has been proposed that a shift in the collagen of the extracellular matrix (ECM) of the muscle, increasing type III and decreasing type I collagen, may be partially responsible for the observed changes. We directly investigated this hypothesis using quantitative real-time PCR on muscles and tendons that had been denervated for 5 wk. Five weeks of denervation resulted in a 2.91-fold increase in collagen concentration but no change in the content of collagen in the muscle, whereas in the tendon there was no change in either the concentration or content of collagen. The expression of collagen I, collagen III, and lysyl oxidase mRNA in the ECM of muscle decreased (76 +/- 1.6%, 73 +/- 2.3%, and 83 +/- 3.2%, respectively) after 5 wk of denervation. Staining with picrosirius red confirmed the earlier observation of a change in staining color from red to green. Taken with the observed equivalent decreases in collagen I and III mRNA, this suggests that there was a change in orientation of the ECM of muscle becoming more aligned with the axis of the muscle fibers and no change in collagen type. The change in collagen orientation may serve to protect the smaller muscle fibers from damage by increasing the stiffness of the ECM and may partly explain why the region of the tendon closest to the muscle becomes stiffer after inactivity.
منابع مشابه
Immunohistochemical study of type III collagen expression during pre and post-natal rat skin morphogenesis
Objective(s):Skin extracellular matrix, which contains type I and type III collagens, is involved in skin development. The aim of this study was to investigate type III collagen distribution pattern as well as its changes during pre and post-natal skin morphogenesis in rats. Materials and Methods: Ventral skins of Wistar rat embryos at different stages from 10 to 20 gestational day (E10-E20) a...
متن کاملImmobilization of the Alkaline Phosphatase on Collagen Surface via Cross-Linking Method
Background: Collagen, the most abundant protein in the human body, and as an extracellular matrix protein, has an important role in the fiber formation. This feature of the collagen renders establishment of the structural skeleton in tissues. Regarding specific features associated with the collagen, such as, formation of the porous structure, permeability and hydrophilicity, it can also be use...
متن کاملالگوی الکتروفورزی کلاژن جدا شده از یک جفت نابالغ و مقایسه آن با کلاژن جفت بالغ
Serveral different types of collagen have been identified invivo. Human placenta has been employed by a number of investigators over the past decade as a starting material for isolation and characterization of different genetic types of collagen including type I,III,IV and IV molecules. &...
متن کاملI-28: Role of Mevalonate-Ras Homology (Rho)/Rho-Associated Coiled-Coil-Forming Protein Ki nase-Mediated Signaling Pathway in The Pathogenesis of Endometriosis-Associated Fibrosis
Background: Endometriosis, a disease affecting 3-10% of women of reproductive age, is characterized by the ectopic growth of endometrial glands and stroma surrounded by dense fibrous tissue. Whereas, normal eutopic endometrium shows scarless tissue repair during menstrual cycles, which suggests that the endometriotic tissues have distinct mechanisms of fibrogenesis. During the development of en...
متن کاملEffects of Nerve Growth Factor, Insulin- Like Growth Factor-I and Collagen Gel on Peripheral Nerve Channel: Sensory, Functional and Regeneration Through Piezoelectric Electrophysiologicalal Study
Purpose: The limited availability of donor sites for nerve grafts continues to stimulate research toward finding suitable alternatives. Material and Methods: In the following study, the effects of direct administration of Nerve Growth Factor (NGF), Insulin - Like Growth Factor - I (IGF-I) , or / and collagen gel into Polyvinylidene Fluride (PVDF) gap was tested in a rat sciatic nerve model. A ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 292 2 شماره
صفحات -
تاریخ انتشار 2007